The Collider, the Particle and a Theory About Fate
Martial Trezzini/European Pressphoto Agency
Multimedia
Science Times
Readers' Comments
Readers shared their thoughts on this article.
Holger Bech Nielsen, of the Niels Bohr Institute in Copenhagen, and Masao Ninomiya of the Yukawa Institute for Theoretical Physics in Kyoto, Japan, put this idea forward in a series of papers with titles like “Test of Effect From Future in Large Hadron Collider: a Proposal” and “Search for Future Influence From LHC,” posted on the physics Web sitearXiv.org in the last year and a half.
According to the so-called Standard Model that rules almost all physics, the Higgs is responsible for imbuing other elementary particles with mass.
“It must be our prediction that all Higgs producing machines shall have bad luck,” Dr. Nielsen said in an e-mail message. In an unpublished essay, Dr. Nielson said of the theory, “Well, one could even almost say that we have a model for God.” It is their guess, he went on, “that He rather hates Higgs particles, and attempts to avoid them.”
This malign influence from the future, they argue, could explain why the United States Superconducting Supercollider, also designed to find the Higgs, was canceled in 1993 after billions of dollars had already been spent, an event so unlikely that Dr. Nielsen calls it an “anti-miracle.”
You might think that the appearance of this theory is further proof that people have had ample time — perhaps too much time — to think about what will come out of the collider, which has been 15 years and $9 billion in the making.
The collider was built by CERN, the European Organization for Nuclear Research, to accelerate protons to energies of seven trillion electron volts around an 18-mile underground racetrack and then crash them together into primordial fireballs.
For the record, as of the middle of September, CERN engineers hope to begin to collide protons at the so-called injection energy of 450 billion electron volts in December and then ramp up the energy until the protons have 3.5 trillion electron volts of energy apiece and then, after a short Christmas break, real physics can begin.
Maybe.
Dr. Nielsen and Dr. Ninomiya started laying out their case for doom in the spring of 2008. It was later that fall, of course, after the CERN collider was turned on, that a connection between two magnets vaporized, shutting down the collider for more than a year.
Dr. Nielsen called that “a funny thing that could make us to believe in the theory of ours.”
He agreed that skepticism would be in order. After all, most big science projects, including the Hubble Space Telescope, have gone through a period of seeming jinxed. At CERN, the beat goes on: Last weekend the French police arrested a particle physicist who works on one of the collider experiments, on suspicion of conspiracy with a North African wing of Al Qaeda.
Dr. Nielsen and Dr. Ninomiya have proposed a kind of test: that CERN engage in a game of chance, a “card-drawing” exercise using perhaps a random-number generator, in order to discern bad luck from the future. If the outcome was sufficiently unlikely, say drawing the one spade in a deck with 100 million hearts, the machine would either not run at all, or only at low energies unlikely to find the Higgs.
Sure, it’s crazy, and CERN should not and is not about to mortgage its investment to a coin toss. The theory was greeted on some blogs with comparisons to Harry Potter. But craziness has a fine history in a physics that talks routinely about cats being dead and alive at the same time and about anti-gravity puffing out the universe.
As Niels Bohr, Dr. Nielsen’s late countryman and one of the founders of quantum theory, once told a colleague: “We are all agreed that your theory is crazy. The question that divides us is whether it is crazy enough to have a chance of being correct.”
Dr. Nielsen is well-qualified in this tradition. He is known in physics as one of the founders of string theory and a deep and original thinker, “one of those extremely smart people that is willing to chase crazy ideas pretty far,” in the words of Sean Carroll, a Caltech physicist and author of a coming book about time, “From Eternity to Here.”
No hay comentarios:
Publicar un comentario